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Abstract

The iterated prisoner’s dilemma (IPD) has been widely used in the biological and social sciences to model dyadic cooperation. While

most of this work has focused on the discrete prisoner’s dilemma, in which actors choose between cooperation and defection, there has

been some analysis of the continuous IPD, in which actors can choose any level of cooperation from zero to one. Here, we analyse a

model of the continuous IPD with a limited strategy set, and show that a generous strategy achieves the maximum possible payoff against

its own type. While this strategy is stable in a neighborhood of the equilibrium point, the equilibrium point itself is always vulnerable to

invasion by uncooperative strategies, and hence subject to eventual destabilization. The presence of noise or errors has no effect on this

result. Instead, generosity is favored because of its role in increasing contributions to the most efficient level, rather than in counteracting

the corrosiveness of noise. Computer simulation using a single-locus infinite alleles Gaussian mutation model suggest that outcomes

ranging from a stable cooperative polymorphism to complete collapse of cooperation are possible depending on the magnitude of the

mutational variance. Also, making the cost of helping a convex function of the amount of help provided makes it more difficult for

cooperative strategies to invade a non-cooperative equilibrium, and for the cooperative equilibrium to resist destabilization by non-

cooperative strategies.

Finally, we demonstrate that a much greater degree of assortment is required to destabilize a non-cooperative equilibrium in the

continuous IPD than in the discrete IPD. The continuous model outlined here suggests that incremental amounts of cooperation lead to

rapid decay of cooperation and thus even a large degree of assortment will not be sufficient to allow cooperation to increase when

cooperators are rare. The extreme degree of assortment required to destabilize the non-cooperative equilibrium, as well as the instability

of the cooperative equilibrium, may help explain why cooperation in Prisoner’s Dilemmas is so rare in nature.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The iterated prisoner’s dilemma (IPD) has been widely
used in the biological and social sciences to model dyadic
reciprocity. In the discrete version of the IPD, during each
interaction players engage in a standard prisoner’s dilemma
game in which they have only two options in each iteration:
cooperate or defect. In continuous IPDs, in each iteration
players’ contributions vary along a continuum ranging
from pure defection to pure cooperation. When a player
increases her contribution level, her payoff decreases, but
the average payoff of the pair increases.
e front matter r 2006 Elsevier Ltd. All rights reserved.
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Although the continuous IPD seems to be a better model
of many real-world situations, it has been subject to much
less analysis. Killingback and Doebeli (2002), employing
analysis and simulations, consider a model of linear payoff-
based strategies in a continuous IPD, and find that
cooperation can evolve as long as the initial set of strategies
meets a threshold value of cooperativeness. Killingback
and Doebeli note that payoff-based strategies have the
ability to compensate for nonlinear cost and benefit
functions. While the model examined in this paper does
not consider payoff-based strategies, making the cost of
helping a convex function of the amount of help provided
does not change the qualitative nature of our results.
Bendor et al. (1991) organized a tournament of

computer strategies in a noisy continuous prisoner’s
dilemma, and concluded that the strategies that did best

www.elsevier.com/locate/yjtbi
dx.doi.org/10.1016/j.jtbi.2006.09.016
mailto:Stephen.le@ucla.edu
Rob


Rob
ARTICLE IN PRESS



ARTICLE IN PRESS
S. Le, R. Boyd / Journal of Theoretical Biology 245 (2007) 258–267 259
tended to be generous. Tit-for-Tat (TFT) was found to fare
relatively poorly. Bendor, Kramer, and Stout attributed
the superior performance of the generous strategies to their
ability to avoid spiraling downwards into rounds of mutual
recrimination after encountering exogenous error terms.
(Wahl and Nowak 1999a, b) examined a version of the
continuous IPD, considering strategies of the form
y ¼ kx+d, where x is the contribution from the other
player, and y is the contribution to the other player. Based
on a combination of computer simulation and analytical
results, they concluded that cooperative strategies that
resisted invasion had the characteristics of being optimistic
(made high initial offers of xo), generous (offered more
cooperation than the partner did in the previous round)
and uncompromising (offered full cooperation only if the
partner did). However, cooperation in the continuous IPD
with noise was found to be evolutionarily unstable:
cooperative strategies were prone to invasion by more
cooperative strategies, which in turn were invaded by
defectors.

While these results are plausible, they are based mainly
on simulations. By focusing on a model of the noisy
continuous IPD with a more limited strategy set, we have
obtained analytical results that shed some additional light
on the dynamics of the continuous IPD. We demonstrate
that in a model of the noisy continuous IPD based on a
family of reflecting strategies (i.e. with a ‘memory’ of one
move), the following propositions hold:
(1)
 The non-cooperative equilibrium is an evolutionarily
stable strategy (ESS); that is, no other strategy can
invade this equilibrium without positive assortment.
(2)
 A much higher degree of assortment is required to
destabilize the non-cooperative equilibrium than in the
case of the discrete IPD.
(3)
 The strategy that achieves the highest payoff when
paired against itself is a generous (but not maximally
generous) strategy.
(4)
 This generous strategy is an attractor for a certain
neighborhood of the reciprocation parameter; that
is, perturbations within the neighborhood will tend
toward the equilibrium point.
(5)
 Any strategy type can drift in against the cooperative
equilibrium point, and thus a combination of unco-
operative and overly generous types drifting in can
destabilize the equilibrium point.
(6)
 Noise of small magnitude has no effect on this generous
strategy, even when negatively (or positively) biased.
Error terms of larger magnitude have no effect if their
distribution is symmetric.
(7)
 The function of generosity is to increase contributions
to the most efficient level, rather than counteract the
corrosiveness of noise.
(8)
 Allowing the cost of helping to be a convex function of
the amount of help provided makes it more difficult for
marginally cooperative strategies to invade a non-
cooperative equilibrium, and makes it harder for the
cooperative equilibrium to resist destabilization by
non-cooperative strategies.
In addition, computer simulation with a single-locus,
infinite alleles model with Gaussian mutation (Kimura and
Crow, 1964) reveals that three general outcomes result
from destabilization of the cooperative equilibrium: low
mutation rates lead to cyclical polymorphisms of non-
cooperative and cooperative types; greater mutation rates
lead to collapse of the cooperative equilibrium; finally,
higher mutation rates lead to stable polymorphisms
containing a spectrum of non-cooperative and cooperative
types.
Because the strategy set investigated in this model is

more limited than those employed by Bendor et al. (1991);
Wahl and Nowak (1999a, b), not all of these results may be
applicable to their models. Nonetheless, our model seems
to elucidate characteristics of more complicated models
that do not readily lend themselves to analysis.

2. A model of the continuous iterated Prisoner’s dilemma

Consider an iterated game with two players X and Y. X’s
score for round t, Vt(X|Y), is

VtðX jY Þ ¼ xt � cyt (1)

and Y’s score is

VtðY jX Þ ¼ yt � cxt, (2)

where xt is Y’s contribution to X in round t, yt is X’s
contribution to Y, and c, the cost of cooperation, is a
parameter in the range [0, 1]. Thus, X provides a benefit to
Y of xt at a cost cxt to X, and Y provides a benefit to X of yt

at a cost cyt to Y. A contribution of xt ¼ 0 is equivalent to
defection and xt ¼ 1 is equivalent to cooperation in a
discrete linear prisoner’s dilemma in which b ¼ 1.

2.1. Parameterization of the strategy space

We consider strategies that condition contributions only
on the preceding contribution from the other player; i.e.
these strategies have a ‘memory’ of one, similar to Wahl
and Nowak’s linear reactive models (1999a, b). Strategies
are specified by the values of two parameters. The
parameter r represents the rate of reciprocation. Let the
range of r be [0, 2]. We wish to define r is such a way that
zero designates a non-cooperator, one a strict reciprocator,
and two a full cooperator. Accordingly, let X’s contribu-
tion to Y in round t, denoted as yt, be defined as

yt ¼
rxt�1; 0prp1;

xt�1 þ ðr� 1Þð1� xt�1Þ; 1orp2:

(
(3)

Thus, when r is less than or equal to one, the strategy will
return a fraction r of the other player’s contribution. When
r is greater than one, the strategy will return the other
player’s contribution, plus a fraction r�1 of the difference
between 1 (the maximum contribution) and the other
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player’s contribution. Hence, if r is equal to 2, the strategy
will return maximally (i.e. (1) regardless of the other
player’s contribution. Defining r in this way allows us to
map the entire range of contributions ytA[0,1] with a
continuous function and a single parameter r over the
interval [0,2].

The second parameter is fA[0,1], the first contribution of
X to Y.
Fig. 1. Payoff map of V(A|B)�V(B|B) ¼ 0. The thick solid line indicates

combinations of r0 and r where V(A|B)�V(B|B) ¼ 0. P indicates that in

this region V(A|B)�V(B|B)40 (where P stands for positive), and N

indicates V(A|B)�V(B|B)o0 (where N stands for negative). The arrows

indicate the evolutionary dynamics of this system. The two attractors are

r*
¼ 0 and r*

¼ 2�c/w.
2.2. Analysis of evolutionary dynamics

Let w be the conditional probability that interaction t+1
will take place given that t interactions have already
occurred. Let A be a rare invader with reciprocation rate r0,
and let B be the common type with reciprocation rate r.
After some algebra (see Appendix A), we find that the
following system of equations characterizes the relative
payoffs of all possible pairings of invaders against common
types:
V ðAjBÞ � V ðBjBÞ ¼

fwðr�r0Þðc�wrÞ
ð1�w2r0rÞð1�wrÞ

; 0pr0p1; 0orp1;

wðc�ð2�rÞwÞ f ð1�r0Þð1�wÞ�ð1�rÞð1�f ð1�wÞ�r0wÞ½ �

ð1�w2ð2�rÞr0Þð1�wÞð1�wð2�rÞÞ
; 0or0p1; 1prp2;

wðc�wrÞ 1þf ðr�2Þð1�wÞ�rwþr0ðf�1þrw�fwÞ½ �

ð1�wÞð1�rwÞð1�ð2�r0Þrw2Þ
; 1or0p2; 0orp1;

ð1�f Þðr0�rÞðð2�rÞw�cÞ
ðð1�w2ð2�r0ÞÞð2�rÞð1�wð2�rÞÞ

; 1pr0p2; 1orp2:

8>>>>>><
>>>>>>:

(4)
Note the (1�f) term in the last equation of Eq (4). When
the invading type A is more generous than the common
type B, invaders receive an advantage when the common
type makes lower initial contributions of f, because the
higher generosity of invading types leads to faster ramping-
up of contributions in subsequent rounds of play.

The payoffs given in (4) indicate that there are two
critical values of the reciprocation parameter7 r*

¼ c/w
and r*

¼ 2�c/w, where c/w is less than 1. As illustrated in
Fig. 1, when

0prpc=w, (5)

or

2� c=wprp2, (6)

rare, less generous types can always invade the population
(i.e. if r0or, then V(A|B)4V(B|B)). When

c=wprp2� c=w, (7)

more generous types can always invade the population (i.e.
if r04r, then V(A|B)4V(B|B)). When r is equal to either of
the critical values all rare invading types have the same
fitness as the common type.

These payoffs indicate that this evolutionary system has
two attractors. The non-cooperative strategy, r* ¼ 0, is an
ESS. When interaction is random, all rare invaders achieve
negative payoffs relative to pairings of the common type;
i.e., V(A|0)�V(0|0)o0 for all rA[0,2]. The value r* ¼ 2�c/w
is an attractor, but not an ESS. When r is in the range
[c/w, 2�c/w], populations can always be invaded by more
generous mutants, and when it is in the range [2�c/w, 2]
populations can be invaded by less generous mutants. Thus,
selection will tend to move the population toward the
attractor r*

¼ 2�c/w. However, this value is not an ESS
because once reached, all values of reciprocation achieve
the same fitness as the cooperative equilibrium strategy.

2.3. Explanation of evolutionary dynamics

Natural selection will act to increase the rate of
reciprocation, r, if

c=wor (8)

and

c=woð2� rÞ, (9)

where c is the cost/benefit ratio, and w is the probability of
continued interaction. As is typical in models of reciprocity
there is a close relationship between these conditions and
Hamilton’s rule (1964). See Lehmann and Keller (2006) for
a clear discussion.
Expression (8) implies that agents gain from being more

generous when the common type’s rate of reciprocation, r,
weighted by the probability of further interaction, w,
exceeds the cost of one’s cooperation, c. In other words,
agents gain from being more generous when the expected
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Fig. 2. dW[r0]/dr0 plotted against r0, for r0o1 and r0 ¼ r, for four

different choices of convexity n. W represents fitness of a rare invader

with rate of reciprocation r0 in a population with rate of reciprocation r.

As n increases, it is more difficult for marginally cooperative invaders to

destabilize a non-cooperative equilibrium.

Fig. 3. dW[r0]/dr0 plotted against r0, for r041 and r0 ¼ r, for four different

choices of convexity n. W represents fitness of a rare invader with rate of

reciprocation r0 in a population with rate of reciprocation r. As n

increases, it is easier for non-cooperative invaders to destabilize a

cooperative equilibrium.
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benefit of a marginal increase in contributions exceeds the
cost of contributing. Conversely, strategies gain from being
less generous when the other player’s rate of reciprocation
r, weighted by the probability w of further interaction, is
less than the cost c of one’s cooperation.

To understand expression (9), recall that for r41, the
interaction rule stipulates returning the other agent’s
contribution from the previous round, plus the residual
value of r (i.e. 1�r) times the difference between the
maximum contribution and the other agent’s contribution
from the previous round. In order to interpret the
significance of the factor (2�r) in Eq. (9), let

ht�1 ¼ 1� xt�1. (10)

Substituting Eq (10) into the definition of X’s contribu-
tion to Y in round t for r41, Eq (3), yields

yt ¼ 1� ht�1ð2� rÞ (11)

as the response rule for r41. Thus, for r41, the relevant
reciprocation factor is now (2� r) rather than r. It follows
from Eq. (11) that a rare invader will benefit from
continuing to increase its rate of reciprocation r0 until the
factor (2� r), weighted by the probability of interaction w,
equals the cost of cooperation, c. When r increases beyond
the equilibrium point 2� c=w, the factor (2� r), weighted
by the probability of interaction w, is less than the cost of
cooperation, c, and thus increased generosity is not
rewarded. The cooperative equilibrium point is therefore
r� ¼ 2� c=w, and r� ¼ c=w is an unstable equilibrium
point.

The conditions that favor increased or decreased
contributions also affect first contributions, since first
contributions are essentially special cases of contributions
in round t ¼ 1. Thus, for the reasons mentioned above,
when 0proc/w or 2�c/worp2, first contributions f tend
toward 0, and when c/woro2�c/w, first contributions
tend toward 1 (see Appendix C for proof). Similarly, over
the course of a series of interactions between two players,
contributions will tend to either 0 or 1 under the same
conditions as for first contributions.

Interestingly, the equilibrium points are unchanged by
the addition of small exogenous error terms (i.e. e5f) (see
Appendix D for proof). As discussed above, among
reflecting strategies, the net condition for increased rate
of reciprocation requires that the benefit accrued on round
t+1 from a small increase in generosity exceed the cost of
initiating the small increase in generosity on round t. Small
noise terms added to contributions (i.e. errors of imple-
mentation, rather than perception) appear both in the
benefit on round t+1, and in the cost on round t, and
hence are subtracted out of the net condition for increased
rate of reciprocation. Thus, even if small exogenous error
terms are biased negatively, the reciprocation rate r of a
given population will still tend to converge on the
equilibrium points r� ¼ 0 or r� ¼ 2� c=w. Of course, if
the noise terms are symmetrical, they will also cancel out in
the net condition for increased rate of reciprocation.
We studied the effects of convex cost functions by
implementing a cost function of the form

cðxÞ ¼ cxn, (12)

where n41. Simulation results indicated that it was more
difficult for cooperative strategies to destabilize the non-
cooperative equilibrium, and more difficult for the
cooperative equilibrium to be sustained against rare non-
cooperative invaders. In Figs. 2 and 3, dW ½r0�=dr0jr0¼rversus
r0 are plotted for r0o1, and r041, respectively, where W

represents fitness of a rare invader with rate of reciproca-
tion r0, against a population with reciprocation rate r, for
four different choices of convexity n. Fig. 2 illustrates that
as n increases, it is more difficult for marginally cooperative
invaders to destabilize a non-cooperative equilibrium.
Likewise, Fig. 3 illustrates that as n increases, it is easier
for non-cooperative invaders to destabilize a cooperative
equilibrium.

2.4. Stability of non-cooperative ESS

The equilibrium behavior in the continuous and discrete
IPDs are different in one crucial aspect. In both cases, both
pure defection and contingent cooperation are attractors.
In the discrete version, relatively low levels of assortative
non-random pairing destabilize the non-cooperative equi-
librium but not the cooperative (Axelrod and Hamilton,
1981), suggesting that contingent cooperation is the likely
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Table 1

Degree of positive assortment required for successful invasion of rare generous types into a non-cooperative equilibrium in the continuous IPD and the

discrete IPD for selected values of c, w, and r0

Parameters c 0.8 0.5 0.5

w 149/150 149/150 149/150

r0 of rare invader 0.01 0.01 0.1

Degree of positive assortment required for successful invasion of non-

cooperative equilibrium:

Continuous IPD 0.798 0.498 0.474

Discrete IPD 0.026 0.007 0.007
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evolutionary outcome. This is not the case in the
continuous game. Suppose that rare invaders have a
probability p of being paired with their own type. Then,
rare types with rate of reciprocation r0 can invade a
population in which most individuals have a rate of
reciprocation equal to zero when

p4
1� wr0

1=c� wr0
(13)

(see Appendix B for derivation). Compare this to the
degree of assortment required for invasion of rare TFT into
ALLD in the discrete IPD,

p4
1� w

1=c� w
. (14)

The first inequality (13) approaches the second inequal-
ity (14) as r0 approaches 1, but Eq (13) is much greater than
Eq (14) for small values of r0. Table 1 compares the degree
of positive assortment required for successful invasion by
rare generous types into a non-cooperative equilibrium in
the continuous IPD and the discrete IPD for selected
values of c, w, and r0 (of the rare invader):

In the continuous case, mutations which lead to only a
modest increase in reciprocation require much more
assortment to increase than do mutations which have a
large effect. A higher degree of assortment is required to
jumpstart cooperation in the continuous case than in the
discrete case because cooperation diminishes geometrically
at a rate wr0. Thus even if interactions go on a long time (so
that w is near 1), cooperation only lasts a few time periods
when r0 is small. Since many situations in nature may
correspond to continuous rather than discrete games, and
mutations with small effects are often thought to be more
likely than mutations with large effects, this fact may have
important ramifications for studies of cooperation.

3. Evolutionary dynamics of mixed populations: simulation

results

So far we have considered evolutionary dynamics in only
simple ecologies. To explore the dynamics of more complex
ecologies, we used computer simulations. The simulations
utilized a single-locus infinite alleles model (Kimura and
Crow, 1964). A population of 8000 unit-memory reflecting
strategies, with initial reciprocation rate set at the
cooperative equilibrium, rE2�c/w or 1.2, were randomly
paired off, and played continuous iterated prisoner’s
dilemma games with a probability of termination in each
round of w ¼ 149/150, yielding an expected game length of
1/(1�w) or 150 rounds. The next generation g+1 of
strategies acquired reciprocation rates by selecting strate-
gies from the previous generation with a probability
proportional to the payoffs achieved by the parent
strategies in generation g. The reciprocation rates of the
offspring in generation g+1 were then summed with a
Gaussian mutation term with standard deviation s.
Resampling was applied to offspring strategies whose
reciprocation rates were less than 0 or greater than 2. The
cost of cooperation was set at c ¼ 0.8, and the simulations
were run for 3000 generations.
From this simulation (see Appendix E for detailed

results) it was observed that four distinct dynamical
outcomes were associated with the mutation parameter s:
stable cooperation, cyclical polymorphisms, collapse from
the cooperative equilibrium to the uncooperative ESS, and
stable polymorphisms. The relationship between s and the
dynamical outcomes are summarized in Table 2.
Fig. 4 presents simulation results demonstrating the four

ecological types (note that in the case of collapse to the
uncooperative ESS, mutation maintains a small non-zero
mean that is not perceptible on the scale of this graph).
In order to analyse the evolutionary pathways that lead

to these ecological types, we constructed payoff maps (see
Figs. 5 through 7). For purposes of illustration, the payoff
maps are inset into larger graphs that plot the mean
reciprocation rate of the population against generation
time, or g. The payoff maps plot expected payoff W of an
invading strategy with reciprocation rate r0 against a
distribution of reciprocation rates for specific choices of
g. Reciprocation rate distributions were obtained by
sampling 100 individuals from the simulation populations,
where n ¼ 8000.
As noted in Table 2, simulations with these parameter

settings indicate that the cooperative equilibrium is stable
when s, the standard deviation of the Gaussian mutation
parameter, is in the range [0.002, 0.004].
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Fig. 4. Continuous IPD simulation results of four levels of Gaussian

mutation rates, s ¼ 0.002, 0.015, 0.035, 0.055. Other parameters:

g ¼ 3000 generations; population size n ¼ 10,000; cost of cooperation

c ¼ 0.8; conditional probability of continued interaction w ¼ 149/150;

initial r ¼ 2�c/wE1.2.

Table 2

Summary of dynamical outcomes in simulation of continous prisoner’s

dilemma, with the Gaussian mutation parameter standard deviation s

varying from 0.002 to 0.070

Gaussian mutation parameter s,

standard deviation

Dynamical outcome

0.002–0.004 Stable cooperation

0.006–0.032 Cyclical polymorphism

0.034–0.058 Collapse to non-cooperative

equilibrium

0.060–0.070 Stable polymorphisms

Number of generations g ¼ 3000; population size n ¼ 8000; cost of

cooperation c ¼ 0.8; conditional probability of continued interaction

w ¼ 149/150; and initial r ¼ 2�c/wE1.2. Offspring strategies in genera-

tion g+1 acquired strategies from generation g with a probability

proportional to the payoffs achieved by the parent strategies in generation

g; the reciprocation rates of the offspring in generation g+1 were then

summed with a Gaussian mutation term s. For each choice of s, 3

iterations were conducted, except for s in the range [0.028, 0.038], for

which 10 iterations were conducted for each choice of s, in order to attain

better resolution of transition points.

Fig. 5. Simulation illustrating cyclical polymorphisms in a continuous

prisoner’s dilemma. Gaussian mutation standard deviation s ¼ 0.015.

Number of generations ¼ 3000, population size n ¼ 8000, cost of

cooperation c ¼ 0.8, conditional probability of continued interaction

w ¼ 149/150, and initial r ¼ 2�c/wE1.2. The main graph plots mean

reciprocation rate of the population over generation time g. Inset graphs

plot payoff W (bold line) against reciprocation rate r0 of a hypothetical

invader for a sampled distribution (100 individuals sampled from a

population of 8000; represented by bar graph plots) of reciprocation

types at g ¼ 300 (left inset), g ¼ 600 (center inset), and g ¼ 900 (right

inset).
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3.1. An example of a cyclical polymorphism of reciprocation

types

For mutation standard deviation s in the range [0.006,
0.032], the evolutionary dynamic generally follows a
pattern of cyclical polymorphisms, as illustrated in Fig. 5.

The initial population mean reciprocation rate was
set at r* ¼ 2�c/wE1.2. After a period of drift, by
g ¼ 300 the payoff gradient favors strategies with r’ less
than the mean reciprocation rate (see left inset graph in
Fig. 5). Note that the mutation rate parameter standard
deviation s permits a proportion of offspring with
reciprocation rates less than 1 to come into existence.
These types are able to proliferate due to the high payoffs
available to strategies with reciprocation rates less than 1 at
g ¼ 300.
Between g ¼ 300 and 500, the population mean recipro-

cation rate continues to drop (Fig. 5). After the mean
reciprocation rate nears c/w or 0.805, however, the payoff
structure switches to favor increasing reciprocation (see
middle inset graph in Fig. 5). Thus, the population mean
reciprocation rate oscillates around the equilibrium point
r*
¼ 2�c/w or 1.2. This is expected, since, as mentioned in

Section 2.2, the equilibrium point r*
¼ 2�c/w is an

attractor with domain of attraction (c/w, 2]. On the other
hand, if the mutation rate standard deviation s were
sufficiently large, we expect that the population would
proceed beyond the domain of attraction of the coopera-
tive equilibrium, causing the entire population to collapse
to the non-cooperative equilibrium; this is the case
discussed next, in Section 3.2.

3.2. An example of collapse to the non-cooperative

equilibrium

For Gaussian mutation standard deviation s in the range
[0.034, 0.050], the evolutionary dynamic tends to collapse
to the non-cooperative equilibrium, as illustrated in Fig. 6.
As in the previous example in Section 3.1, after starting

off at the cooperative equilibrium, the mean population
reciprocation rate goes through an initial period of drift,
and then the payoff gradient favors decreased reciproca-
tion rates (bold line in left inset graph in Fig. 6). However,
the mutation parameter standard deviation s is now
sufficiently large to allow a substantial proportion of
offspring with reciprocation rates less than c/w to enter the
population (see bar graph in left inset graph in Fig. 6); as
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Fig. 6. Simulation illustrating collapse to the non-cooperative equili-

brium in the continuous prisoner’s dilemma. Gaussian mutation standard

deviation s ¼ 0.045. Number of generations ¼ 1000, population size

n ¼ 8000, cost of cooperation c ¼ 0.8, conditional probability of

continued interaction w ¼ 149/150, and initial r ¼ 2�c/wE1.2. The main

graph plots mean reciprocation rate of the population over generation

time g. Inset graphs plot payoff W (bold line) against reciprocation rate r0

of a hypothetical invader for a sampled distribution (100 individuals

sampled from a population of 8,000; represented by bar graph plots) of

reciprocation types at g ¼ 300 (left inset) and g ¼ 1000 (right inset).

Fig. 7. Simulation illustrating stable polymorphisms in the continuous

prisoner’s dilemma. Gaussian mutation standard deviation s ¼ 0.065.

Number of generations g ¼ 3000, population size n ¼ 8000, cost of

cooperation c ¼ 0.8, conditional probability of continued interaction

w ¼ 149/150, and initial r ¼ 2�c/wE1.2. The main graph plots mean

reciprocation rate of the population over generation time g. Inset graphs

plot payoff W (bold line) against reciprocation rate r0 of a hypothetical

invader for a sampled distribution (100 individuals sampled from a

population of 8000; represented by bar graph plots) of reciprocation

types at g ¼ 300 (left inset) and g ¼ 1000 (right inset).

S. Le, R. Boyd / Journal of Theoretical Biology 245 (2007) 258–267264
explained in Section 2.2, the non-cooperative equilibrium
point r*

¼ 0 is an attractor with domain of attraction [0,
c/w). The population is thus driven toward the non-
cooperative equilibrium (right inset graph in Fig. 6). The
mean reciprocation rate around the non-cooperative
equilibrium is non-zero due to constant mutation.

3.3. An example of a stable polymorphism of reciprocation

types

Finally, at sufficiently high mutation rates (sX0.060), a
stable polymorphism of cooperative and non-cooperative
types is maintained in the population. As in the previous
Section 3.2, after starting out approximately at the
cooperative equilibrium r*

¼ 2�c/w or 1.2, the mutation
parameter allows offspring with reciprocation rates less
than c/w to enter the population, driving the population
toward the non-cooperative equilibrium r� ¼ 0 (Fig. 7,
left inset graph). Unlike the previous case, though, the
mutation rate here is large enough to maintain a spectrum
of reciprocation types via mutation-selection balance
(Fig. 7, right inset graph). In addition, there is a small
payoff maximum at r0 ¼ 1, which enables a limited degree
of disruptive selection (Fig. 7, right inset graph).

4. Discussion

4.1. Wahl and Nowak’s continuous IPD model

Wahl and Nowak (1999a,b) considered a version of the
continuous IPD with strategies of the form y ¼ kxþ d.
They used computer simulations to show that cooperative
strategies that apparently resisted invasion were optimistic
(made high initial offers of xo), generous (offered more
cooperation than the partner did in the previous round)
and uncompromising (offered full cooperation only if the
partner did).
The model used here has only parameters, f, the first

contribution, and r, the rate of reciprocation, but it
employs a more complex piece-wise linear functional form.
We believe that this formalization is useful because it
represents a continuum of strategy types ranging from
complete stinginess (r ¼ 0) through balanced reciprocity
(r ¼ 1) to complete generosity (r ¼ 2) with a single
parameter. In our view, the piece-wise linear form, though
somewhat more complicated mathematically than a single
linear response rule, is conceptually simple due to its
symmetry, with the response for rX1 being a mirror image
of the response rule for ro1. Instead of reflecting back the
amount received in the previous round, generous strategies
reflect back the remaining difference between the amount
received in the previous round and the maximum
contribution. The analytical simplicity gained in our model
allows us to make conclusions that are applicable to Wahl
and Nowak’s model.
In comparing the general instability of the reflecting

strategy continuous IPD with the general instability of the
discrete IPD, in the case of the discrete IPD, TFT is
susceptible to invasion by strategies that perform identi-
cally against TFT (such as TF2T), but which have
characteristics that distinguish their behavior in other
ecologies. Similarly, in the reflecting strategy continuous
IPD, uncooperative strategies perform identically against
the cooperative equilibrium strategy, but are unmasked in
other ecologies.
Wahl and Nowak (1999b) found that cooperation in the

continuous IPD with noise was evolutionarily unstable:
cooperative strategies were prone to invasion by more
cooperative strategies, which in turn were invaded by
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defectors. The manner in which Wahl and Nowak model
noise is different from our method. Wahl and Nowak
consider errors of perception, while we consider errors of
implementation. Note that the definitions of perception and
implementation errors employed here are different from the
definitions employed in models of indirect reciprocity (e.g.
Panchanathan and Boyd, 2004). In the simple model
presented here, strategies have no capacity to deal with
‘knowledge’ of their own errors. Thus, errors of perception
as defined in the case of indirect reciprocity are not
applicable this model. Nonetheless, the overall pattern of
our model matches the finding obtained by Wahl and
Nowak: namely, the cooperative equilibrium is susceptible to
uncooperative strategies that drift in. Our computer simula-
tion indicates that, in single-locus infinite alleles Gaussian
mutation models, if the population is destabilized from the
cooperative equilibrium, it will then settle into a range of
dynamical outcomes, depending on the mutation rate.

4.2. Bendor, Kramer, and Stout’s tournament

In Bendor et al.’s (1991) noisy continuous IPD tourna-
ment, they found that the most successful strategies were
those that were generous, where generosity was defined as
V(TFT|x)�V(x|TFT); i.e., a strategy x was deemed generous
if x did worse against TFT than TFT playing against x

(Bendor et al., 1991, p. 701). While Bendor, Kramer, and
Stout’s explanation was that generous strategies avoided
spiraling into rounds of mutual recrimination in noisy
environments (Bendor et al., 1991, p. 706), the preceding
analysis suggests that another role of generosity in the noisy
continuous IPD is to ramp up contributions to the most
efficient level. Moreover, this is true even for continuous
IPDs in noise-free environments. Nonetheless, noise may
still corrode cooperation for strategies that are sensitive to
contribution thresholds, and generosity in perception and
implementation may help counteract this tendency, as
Bendor, Kramer, and Stout asserted.

4.3. Cooperative dilemmas in nature

The prominence of the discrete IPD in the social and
biological sciences has resulted in much focus on recipro-
city. However, to date, few examples of reciprocal altruism
have been documented among non-primates (Dugatkin,
1997; Hammerstein, 2003). Our analysis of the continuous
IPD suggests that two important factors may contribute to
the scarcity of solutions to cooperative dilemmas in nature.
First, generous invaders are typically neither sufficiently
numerous nor sufficiently cooperative to overcome the
costs of cooperation. Jumpstarting generosity is easier in
the discrete IPD model, but the discrete model applies only
to situations with a sharp dichotomy between cooperation
and defection. These types of situations are likely to be rare
in nature. It is normally held that selection gives rise to
complex behavioral adaptations in small steps. The discrete
model only permits drastic mutations from an uncoopera-
tive to a fully cooperative state. This continuous model
suggests that small amounts of cooperation lead to the
rapid decay of cooperation, and thus even a large degree of
assortment will not be sufficient to allow cooperation to
increase when rare.
Second, the generous equilibrium itself is potentially

unstable. Depending on the magnitude of the mutation
parameter variance, the system is driven to one of four
dynamic states: stable cooperation; cyclical polymorph-
isms; collapse into the non-cooperative equilibrium; or
stable polymorphisms maintained principally via mutation-
selection balance, and to a lesser degree via disruptive
selection.
Mutation has two competing effects. Increasing the

mutation rate can allow highly cooperative types to invade
a non-cooperative population. However, high mutation
rates also encourage the re-invasion of the cooperative
equilibrium by non-cooperative types.
Despite the differences in parameterization, the qualita-

tive aspects of our model agree broadly with those of Wahl
and Nowak’s (1999a) model. We concur that the evolution
of cooperation in the continuous IPD is dependent to a
large degree on the cost/benefit ratio. We also observe that
the mutation rate presents a further wrinkle to the
evolution of cooperation. Finally, as the dynamics of this
model are sensitive to the choice of parameterization,
models of greater generality may help test the validity of
the conclusions in this paper.
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Appendix A. Relative payoffs of all possible pairings of

strategy types

Let A denote a player with level of reciprocation r0,
0pr0o1, and let B denote a player with level of
reciprocation r, 0pro1. We wish to show that

V ðAjBÞ � V ðBjBÞ ¼
fwðr� r0Þðc� wrÞ

ð1� w2r0rÞð1� wrÞ
. (A.1.)

A and B receive the following contributions:
Round
 B’s contribution to A
 A’s contribution to B
1
 f
 f
2
 fr
 fr0
3
 fr0r
 frr0
4
 fr2r0
 fr02r
y
 y
 y
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Weighting each player’s contribution each round by a

factor of w, and summing to infinity, we obtain

V ðAjBÞ ¼
f ðð1� cÞ þ wðr� cr0ÞÞ

1� w2r0r
. (A.2.)

Using Eq. (A.2.), we can derive V(B|B), and thus obtain

V ðAjBÞ � V ðBjBÞ ¼
fwðr� r0Þðc� wrÞ

ð1� w2r0rÞð1� wrÞ
, (A.3.)

as desired. Eq. (A.3.) yields the unstable equilibrium point
r*
¼ c/w.
The proofs for the other three cases (r041 and ro1, etc.)

follow similarly, and are left to the reader.
Appendix B. Degree of positive assortment required for

invasion of non-cooperative population by rare marginally

generous strategies

Consider two strategies: R, with reciprocation rate r ¼ 0,
and S, with reciprocation rate r ¼ d, where d is small. Let
the first contribution be f for both strategies.

V ðRjRÞ ¼ f � cf ¼ ð1� cÞf (B.1.)

V ðSjRÞ ¼ f � cf � wdfc (B.2.)

V ðSjSÞ ¼ f ð1� cÞ=ð1� wdÞ (B.3.)

S invades when

pV ðSjSÞ þ ð1� pÞV ðSjRÞ4V ðRjRÞ. (B.4.)

Substituting Eq. (B.1.), (B.2.), and (B.3.) into (B.4.)
yields

p4
1� wd
1=c� wd

as the required degree of positive assortment for invasion
of a non-cooperative population by a marginally generous
invader.

Appendix C. First contributions tend toward either 0 or 1

Let A denote a player with first contribution f1, and let B

denote a player with first contribution f2. The rate of
reciprocation for both players is ro1. We wish to show
that f evolves toward either 0 or 1, depending on r.

A and B receive the following contributions:
Round
 B’s contribution to A
 A’s contribution to B
1
 f2
 f1

2
 f1r
 f2r
3
 f2r
2
 f1r

2

y
 y
 y
Weighting each player’s contributions each round by a

factor of w, and summing to infinity, we obtain

V ðAjBÞ ¼
f 2ð1� cwrþ wr� cÞ

1� ðwrÞ2
. (C.1.)

Using Eq. (C.1.), we can derive V(B|B), and thus obtain

V ðAjBÞ � V ðBjBÞ ¼
ðf 1 � f 2Þðwr� cÞ

1� ðwrÞ2
(C.2.)

which is positive if f14f2 and r4c/w, or f1of2 and roc/w.
Similarly, for r41,

V ðAjBÞ � V ðBjBÞ ¼
ðf 1 � f 2Þðwð2� rÞ � cÞ

1� ðwð2� rÞÞ2
. (C.3.)

Thus, combining Eqs. (C.2.) and (C.3.)., when roc/w or
r42�c/w, first contributions f will tend toward 0, and when
c/woro2�c/w, first contributions will tend toward 1.

Appendix D. Small noise terms (eoof) do not affect the

equilibria

Let A denote a player with first contribution f+e and
reciprocation level r0, where e is a small exogenous
implementation error term, and let B denote a player with
first contribution f and reciprocation level r. We wish to
show that the addition of e to A’s first move will not affect
the equilibrium point r*

¼ c/w.
A and B receive the following contributions:
Round
 B’s contribution to A
 A’s contribution to B
1
 f
 f+e

2
 (f+e)r
 fr0
3
 fr0r
 (f+e)r0r

y
 y
 y
Weighting each player’s contributions each round by a
factor of w, and summing to infinity, we obtain

V ðAjBÞ � V ðBjBÞ ¼
ðwr� cÞð�þ wðf ðr0 � rÞ � �rÞÞ

ð1� w2r0rÞð1� wrÞ
.

(D.1.)

If e5f, then roc/w, and r04r)V(A|B)�V(B|B)o0. Thus
the overall evolutionary dynamics remain unchanged by
the addition of an exogenous error term. The equilibrium
point r*

¼ c/w remains unchanged.
The proof for the other case (r*

¼ 2�c/w) follows
similarly, and is left to the interested reader.

Appendix E. Dynamical outcomes in a continuous prisoner’s

dilemma simulation with varying s (standard deviation of the

Gaussian mutation parameter)

Table 3 lists the results of simulations of the continuous
prisoner’s dilemma, with the Gaussian mutation parameter
standard deviation s varying from 0.002 to 0.070. This
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Table 3

Dynamical outcomes in a continuous prisoner’s dilemma simulation with

varying s (standard deviation of Gaussian mutation parameter)

Gaussian mutation parameter s,

standard deviation

Results from three iterations

(except * results, which were run

for 10 iterations)

0.002 Stable cooperation (SC)

0.004 SC

0.006 Cyclical polymorphism (CP)

0.008 CP

0.010 CP

0.012 CP

0.014 CP

0.016 CP

0.018 CP

0.020 CP

0.022 CP

0.024 CP

0.026 CP

0.028 *CP� 7 Collapse to non-

cooperative ESS (CO)� 3

0.030 *CP� 9, CO� 1

0.032 *CP� 6, CO� 4

0.034 *CO� 4, CP� 6

0.036 *CO� 3, CP� 7

0.038 *CO

0.040 CO

0.042 CO

0.044 CO

0.046 CO

0.048 CO

0.050 CO

0.052 CO

0.054 CO

0.056 CO

0.058 CO� 2 stable polymorphism

(SP)� 1

0.060 SP

0.062 SP

0.064 SP

0.066 SP

0.068 SP

0.070 SP

SC indicates stable cooperation; CP indicates cyclical polymorphism; CO

indicates collapse to non-cooperative equilibrium; SP indicates stable

polymorphism. Number of generations g ¼ 3000; population size

n ¼ 8000; cost of cooperation c ¼ 0.8; conditional probability of

continued interaction w ¼ 149/150; and initial r ¼ 2�c/wE1.2. Offspring

strategies in generation g+1 acquired strategies from generation g with a

probability proportional to the payoffs achieved by the parent strategies in

generation g; the reciprocation rates of the offspring in generation g+1

were then summed with s. For each choice of s, 3 iterations were

conducted, except for s in the range [0.028, 0.038], for which 10 iterations

were conducted for each choice of s.
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table shows that four basic dynamical outcomes resulted:
stable cooperation; cyclical polymorphisms; collapse to
non-cooperative equilibrium; and finally, stable poly-
morphisms. Parameters were as follows: number of
generations g ¼ 3000; population size n ¼ 8000; cost of
cooperation c ¼ 0.8; conditional probability of continued
interaction w ¼ 149/150; and initial r ¼ 2�c/wE1.2. Off-
spring strategies in generation g+1 acquired strategies
from generation g with a probability proportional to the
payoffs achieved by the parent strategies in generation g;
the reciprocation rates of the offspring in generation g+1
were then summed with a Gaussian mutation term s. For
each choice of s, 3 iterations were conducted, except for s in
the range [0.028, 0.038], for which 10 iterations were
conducted for each choice of s, in order to attain better
resolution of transition points.
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